
 Attributes of a good language

Introduction

1

• Clarity, simplicity, and unity - provides both a
framework for thinking about algorithms and a means
of expressing those algorithms

• Orthogonality -every combination of features is
meaningful

• Naturalness for the application - program structure
reflects the logical structure of algorithm

• Support for abstraction - program data reflects
problem being solved

2

Attributes of a good language

• Ease of program verification - verifying that program
correctly performs its required function

• Programming environment - external support for the
language

• Portability of programs - transportability} of the
resulting programs from the computer on which they
are developed to other computer systems

• Cost of use - program execution, program translation,
program creation, and program maintenance

3

Attributes of a good language
(continued)

 Syntax
• What a program looks like
• BNF (context free grammars) - a useful notation
for describing syntax.

 Semantics
• Execution behavior
• Static semantics - Semantics determined at
compile time:
 var A: integer; Type and storage for A
 int B[10]; Type and storage for array B
 float MyProcC(float x;float y){...}; Function

attributes

• Dynamic semantics - Semantics determined during
execution:
 X = ``ABC'' SNOBOL4 example: X a string
 X = 1 + 2; X an integer
 :(X) X an address; Go to label X

4

Program structure

 Declarations - Information for compiler
 var A: integer;
 typedef struct { int A; float B } C;

 Control - Changes to state of the machine
 if (A<B) { ... }
 while (C>D) { ... }

 Structure often defined by a Backus Naur Form (BNF) grammar
(First used in description of Algol in 1958. Peter Naur was
chair of Algol committee, and John Backus was secretary of
committee, who wrote report.)

 We will see later - BNF turns out to be same as context free
grammars developed by Noam Chomsky, a linguist)

5

Aspects of a program

Stages in translating a program

6

 Lexical analysis (Scanner): Breaking a program into
primitive components, called tokens (identifiers,
numbers, keywords, ...) We will see that regular
grammars and finite state automata are formal
models of this.

 Syntactic analysis (Parsing): Creating a syntax
tree of the program. We will see that context free
grammars and pushdown automata are formal models of
this.

 Symbol table: Storing information about declared
objects (identifiers, procedure names, ...)

 Semantic analysis: Understanding the relationship
among the tokens in the program.

 Optimization: Rewriting the syntax tree to create a
more efficient program.

 Code generation: Converting the parsed program into
an executable form.

 We will briefly look at scanning and parsing. A
full treatment of compiling is beyond scope of this
course.

7

Major stages

8

Translation environments

 Nonterminal: A finite set of symbols: <sentence> <subject> <predicate>
<verb> <article> <noun>

 Terminal: A finite set of symbols: the, boy, girl, ran, ate, cake

 Start symbol: One of the nonterminals: <sentence>

 Rules (productions): A finite set of replacement rules:
 <sentence> ::= <subject> <predicate>
 <subject> ::= <article> <noun>
 <predicate>::= <verb> <article> <noun>
 <verb> ::= ran | ate
 <article> ::= the
 <noun> ::= boy | girl | cake

 Replacement Operator: Replace any nonterminal by a right hand side value
using any rule (written)

9

BNF grammars

 <sentence> <subject> <predicate> First rule
 <article> <noun> <predicate> Second rule
 the <noun> <predicate> Fifth rule
 ... the boy ate the cake

 Also from <sentence> you can derive
 the cake ate the boy
 Syntax does not imply correct semantics

 Note:
 Rule <A> ::= <C>
 This BNF rule also written with equivalent syntax:
 A BC

10

Example BNF sentences

 Any string derived from the start symbol is a sentential
form.

 Sentence: String of terminals derived from start symbol by
repeated application of replacement operator

 A language generated by grammar G (written L(G)) is the set
of all strings over the terminal alphabet (i.e., sentences)
derived from start symbol.

• That is, a language is the set of sentential forms
containing only terminal symbols.

11

Languages

Derivations
A derivation is a sequence of
sentential forms starting from
start symbol.

Derivation trees:
Grammar: B 0B | 1B | 0 | 1
Derivation: B 0B 01B 010
From derivation get parse tree

But derivations may not be
unique
S SS | (S) | ()

S SS (S)S (())S (())()
S SS S() (S)() (())()
Different derivations but get
the same parse tree

12

 But from some grammars you can get 2 different parse trees for
the same string: ()()()

 Each corresponds to a unique derivation:
 S SS SSS ()SS ()()S ()()()

 A grammar is ambiguous if some sentence has 2 distinct parse
trees.

 We desire unambiguous grammars to understand semantics.

13

Ambiguity

 How to characterize strings of length 0? – Semantically it makes sense
to consider such strings.

 1. In BNF, -productions: S SS | (S) | () |

 Can always delete them in grammar. For example:

 X abYc

 Y
 Delete -production and add production without :
 X abYc

 X abc
 2. In fsa - moves means that
 in initial state, without input
 you can move to final state.

14

Role of

 During Algol era, thought that BNF could be
used for semantics of a program:

 What is the value of: 2 * 3 + 4 * 5?
 (a) 26
 (b) 70
 (c) 50

 All are reasonable answers? Why?

15

Syntax can be used to determine
some semantics

 E E + T | T
 T T * P | P
 P i | (E)

 “Natural” value of expression
 is 26
• Multiply 2 * 3 = 6
• Multiply 4 * 5 = 20
• Add 6 + 20 = 26

16

Usual grammar for expressions

But the “precedence” of operations
is only a convention

17

Grammar for 70
 E E * T | T

 T T + P | P

 P i | (E)

Grammar for 50
 E E + T | E * T | T

 T i | (E)

Draw parse tree of
expression 2*3+4*5 for each
grammar

All 3 grammars generate exactly the same language, but
each has a different semantics (i.e., expression value)
for most expressions.

 BNF: Backus-Naur Form - Context free -
Type 2 - Already described

 Regular grammars: subclass of BNF - Type
3:

 BNF rules are restricted: A t N |
t

 where: N = nonterminal, t = terminal

 Examples:
 Binary numbers: B 0 B | 1 B | 0 | 1

 Identifiers:
 I a L | b L | c L |...| z L | a |...|
y | z

 L 1 L | 2 L |...| 9 L | 0 L | 1 |...|
9 | 0 | a L | b L | c L |...| z L | a
|...| y | z

18

Classes of grammars

ab7d

 The context free and regular grammars are important
for programming language design. We study these in
detail.

 Other classes have theoretical importance, but not in
this course:

 Context sensitive grammar: Type 1 - Rules:
where | | | | [That is, length of length of
, i.e., all sentential forms are length non-
decreasing]

 Unrestricted, recursively enumerable: Type 0 -
 Rules: . No restrictions on and .

19

Other classes of grammars

